
www.umbc.edu

CMSC202
Computer Science II for Majors

Lecture 17 and 18 –

Bits & Pieces and Templates

Dr. Katherine Gibson

www.umbc.edu

Last Class We Covered

• Error handling

• Exceptions

– Try

– Throw

– Catch

• Went over Exam 2

2

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

• Bits & Pieces

– Initialization lists

– The “grep” command

– Redirecting input and output

• Templates

– How to implement them

– Possible problems (and solutions)

– Compiling with templates

4

www.umbc.edu

Bits & Pieces

www.umbc.edu

Initialization Lists

• Initialization lists are the only way you can call
a base class constructor from a derived class

Derived(int arg1, string arg2, float arg3)

: Base(arg1, arg2)

{

m_derivedOnlyArg = arg3;

}

6

Must use a colon,
and must come

before the { } braces

www.umbc.edu

The “grep” Command

• Used to search through text (e.g., your code)

grep <flags> "text" <files to search>

• Useful flags (optional):

-n show the line number of the match

-i make the search case insensitive

-B # show # lines before the match

-C # show # lines after the match

7

www.umbc.edu

The “grep” Command

• Used to search text (e.g., your code)

grep <flags> "text" <files to search>

• Useful ways to search files:

-* search all files

-*.cpp search all files that end in “.cpp”

-test.cpp search only the file “test.cpp”

• You can also use the “*” in your search query

8

www.umbc.edu

The “grep” Command

• Here are some example uses of grep:
grep -nB 3 -C 2 "int" temp.cpp

– Looks for the word “int” in the temp.cpp file, and
displays 3 lines before, 2 lines after, and the line #

grep –in "cruno*" Cruno*.cpp

– Will look for any instance of the word “cruno”
(upper or lower), in all of the .cpp files that start
with the word “Cruno”; it shows the line # as well

9

www.umbc.edu

Redirecting Input and Output

• Rather than printing output to the screen, we
can save it in a file, using redirection

– BTW, this has to do with GL/Linux, not C++

• Use the angle brackets (< and >) to redirect

– Output files don’t need to exist beforehand

• The system will create one for you

– Input files do need to exist beforehand

10

www.umbc.edu

Redirection Examples

• Save a.out’s output (i.e., cout) into “output.txt”

./a.out > output.txt

• Use “input.txt” in lieu of user input for Proj7

./Proj7 < input.txt

• Use “in.txt” and save “out.txt” at the same time

./a.out > out.txt < in.txt

• Save all the output, including errors (e.g., cerr)

./a.out >& allOutput.txt

11

www.umbc.edu

Templates

www.umbc.edu

Overloading Swap Function

• Here is a function to swap two integers:

void SwapVals(int &v1, int &v2) {

int temp;

temp = v1;

v1 = v2;

v2 = temp;

}

13

what if we want to
swap two floats?

what do we need
to change?

www.umbc.edu

Overloading Swap Function

• Here is a function to swap two floats:

void SwapVals(float &v1, float &v2) {

float temp;

temp = v1;

v1 = v2;

v2 = temp;

}

14

what if we want to
swap two chars?

what do we need
to change?

www.umbc.edu

Overloading Swap Function

• Here is a function to swap two chars:

void SwapVals(char &v1, char &v2) {

char temp;

temp = v1;

v1 = v2;

v2 = temp;

}

15

what if we want to
swap two strings?

what do we need
to change?

www.umbc.edu

Overloading Swap Function

• This is getting ridiculous!

• We should be able to write just one function
that can handle all of these things

– The only difference is the data type, after all

• This is possible by using templates

16

www.umbc.edu

What Are Templates?

• Templates let us create functions and classes
that can use “generic” input and types

• This means that functions like
SwapVals() only need to be written once

– And can then be used for almost anything

17

www.umbc.edu

Overloaded Example

float maxx (const float a, const float b);

int maxx (const int a, const int b);

Rational maxx (const Rational& a, const Rational& b);

myType maxx (const myType& a, const myType& b);

• Code for each looks the same…
if (a < b)

return b;

else

return a;

18

We want to reuse this
code for all types

www.umbc.edu

Indicating Templates

• To let the compiler know you are going to
apply a template, use the following:

template <class T>

19

this keyword tells
the compiler that
what follows this
will be a template

www.umbc.edu

Indicating Templates

• To let the compiler know you are going to
apply a template, use the following:

template <class T>

20

this does not mean
“class” in the same
sense as C++ classes
with members!

in fact, another keyword
we can use is actually
“typename”, because we
are defining a new type

but “class” is more common
by far, and so we will use
“class” to avoid confusion

www.umbc.edu

Indicating Templates

• To let the compiler know you are going to
apply a template, use the following:

template <class T>

21

“T” is the name
of our new type

we can call it anything
we want, but using “T”
is the style convention

(of course, we can’t use “int” or
“for” or any other types or
keywords as a name for our type)

www.umbc.edu

Indicating Templates

• To let the compiler know you are going to
apply a template, use the following:

template <class T>

• What this line means overall is that we plan to
use “T” in place of a data type

– e.g., int, char, myClass, etc.

• This template prefix needs to be used before
function declarations and function definitions

22

www.umbc.edu

Template Example

• Function Template
template <class T>

T maxx (const T& a, const T& b)

{

if (a < b)

return b;

else

return a;

}

• Compiler generates code based on the argument type
cout << maxx(4, 7) << endl;

• Generates the following:
int maxx (const int& a, const int& b)

{

if (a < b)

return b;

else

return a;

}

23

www.umbc.edu

Template Example

• Function Template
template <class T>

T maxx (const T& a, const T& b)

{

if (a < b)

return b;

else

return a;

}

• Compiler generates code based on the argument type
cout << maxx(4, 7) << endl;

• Generates the following:
int maxx (const int& a, const int& b)

{

if (a < b)

return b;

else

return a;

}

24

Notice how ‘T’ is

mapped to ‘int’

everywhere in the

function…

www.umbc.edu

Using Templates

• When we call these templated functions,
nothing looks different:

SwapVals(intOne, intTwo);

SwapVals(charOne, charTwo);

SwapVals(strOne, strTwo);

SwapVals(myClassA, myClassB);

25

www.umbc.edu

(In)valid Use of Templates

• Which of the following function calls will work?
SwapVals(bigInt, littleInt);

SwapVals(myChar, myString);

SwapVals("hello", "world");

SwapVals(doubleVar, floatVar);

SwapVals(Shape1, Shape2);

26

These use two different

types, and the

SwapVals() function

doesn’t allow this.

These are two

string literals – we

can’t swap those!

www.umbc.edu

Template Requirements

• Templated functions can handle any
input type that “makes sense”

– i.e., any data type where the behavior
that occurs in the function is defined

• Even user-defined types!

– As long as the behavior is defined

– What happens if the behavior isn’t defined?

• Compiler will give you an error (maybe)

• Your program compiles, but doesn’t work right
27

www.umbc.edu

Project 4 Announcement

• There were some questions about this, so…

• A player who has to Draw Two does NOT skip
their turn!

• They can play a card after drawing two

28

www.umbc.edu

Overloading Templates

www.umbc.edu

Why Overload Templates?

• Sometimes, even though the behavior is
defined, the function performs incorrectly

• Assume the code:
char* s1 = "hello";

char* s2 = "goodbye";

cout << maxx(s1, s2);

• What is the call to maxx() actually going to do?

30

www.umbc.edu

Incorrect Template Performance

• The compiler generates:
char* maxx (const char*& a, const char*& b)

{

if (a < b)

return b;

else

return a;

}

• Is this what we want?

– It’s going to sort them by their address in memory!

31

www.umbc.edu

Overloading a Template

• Fix this by creating a version of maxx()

specifically to handle char* variables

– Compiler will use this instead of the template

char* maxx(char *a, char *b)

{

if (strcmp(a, b) < 0)

return b;

else

return a;

}

32

www.umbc.edu

Compiling Templates

www.umbc.edu

Compiler Handling of Templates

• Exactly what versions of SwapVals() are
created is determined at what? time

• If we call SwapVals() with integers and
strings, the compiler will create versions of
the function that take in integers and strings

34

compile

www.umbc.edu

Separate Compilation Problem

• Which versions of templated function to
create are determined at compile time

• How does this affect our use of separate
compilation?

– Function declaration in .h file

– Function definition in .cpp file

– Function call in separate .cpp file

35

www.umbc.edu

Separate Compilation: Example

• Here’s an illustrative example:

36

template <class T>

void SwapVals(T &v1, T &v2);

swap.h

#include "swap.h"

template <class T>

void SwapVals(T &v1, T &v2)

{

T temp;

temp = v1;

v1 = v2;

v2 = temp;

}

swap.cpp

#include "swap.h"

int main()

{

int a = 3, b = 8;

SwapVals(a, b);

}

main.cpp

www.umbc.edu

Separate Compilation Problem

• Most compilers (including GL’s) cannot handle
separate compilation with templates

• When swap.cpp is compiled…

– There are no calls to SwapVals()

– so swap.o has no SwapVals() definitions

37

www.umbc.edu

Separate Compilation Problem

• When main.cpp is compiled…

– It assumes everything is fine

– Since swap.h has the appropriate declaration

• When main.o and swap.o are linked…

– Everything goes wrong

– error: undefined reference to

‘void SwapVals<int>(int&, int&)’

38

www.umbc.edu

Separate Compilation Solutions

• The template function definition code must be
in the same file as the function call code

• Two ways to do this:

– Place function definition in main.c

– Place function definition in swap.h,
which is #include’d in main.c

39

www.umbc.edu

Template Compilation Solution

• Second option keeps some sense of separate
compilation, and better allows code reuse

40

// declaration

template <class T>

void SwapVals(T &v1, T &v2);

// definition

template <class T>

void SwapVals(T &v1, T &v2)

{

T temp;

temp = v1;

v1 = v2;

v2 = temp;

}

swap.h

#include "swap.h"

int main()

{

int a = 3, b = 8;

SwapVals(a, b);

}

main.cpp

www.umbc.edu

Class Templates

www.umbc.edu

Templating Classes

• Want to be able to define classes that
work with various types of objects

• Shouldn’t matter what kind of object it stores

• Generic “collections” of objects

– Linked List

– Stack

– Vector

– Binary Tree (341)

– Hash Table (341)
42

www.umbc.edu

Making a Templated Class

• Three key steps:

1. Add template line

– Before class declaration

2. Add template line

– Before each method in implementation

3. Change class name to include template

– Add <T> after the class name wherever it appears

43

www.umbc.edu

Example: Templated Node

44

template <class T>

class Node

{

public:

Node(const T& data);

const T& GetData();

void SetData(const T& data);

Node<T>* GetNext();

void SetNext(Node<T>* next);

private:

T m_data;

Node<T>* m_next;

};

template <class T>

Node<T>::Node(const T& data)

{

m_data = data;

m_next = NULL;

}

template <class T>

const T& Node<T>::GetData()

{

return m_data;

}

template <class T>

void Node<T>::SetData(const T& data)

{

m_data = data;

}

template <class T>

Node<T>* Node<T>::GetNext()

{

return m_next;

}

template <class T>

void Node<T>::SetNext(Node<T>* next)

{

m_next = next;

}

www.umbc.edu

Templates as Parameters

• Not much different from a “regular” variable

template <class T>

void Sort (SmartArray<T>& theArray)

{

// code here

}

• Make sure that the behaviors used in the
function are defined for the type you’re using

45

www.umbc.edu

What Use are Templates?

• The STL is essentially templates on steroids

– Standard Template Library

• Works with many custom created objects
but only if you overload the needed operators

– =, !=, <, compare (used for sorting), etc.

• Likely you will also want to overload streams
– cout <<

– cin >>

46

